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Joint Confidence LeVeElRE=SSSE B Machine Learning

Holistic View of Uncertainty

An intfegrated uncertainty analysis of
cost and schedule and a process
combining a project’s cost,
schedule, and risk info a complete
picture

Joint Probability Approach

Represents a calculation combining
the individual cost and schedule risk
analyses into a joint probability
distribution

Integrated Cost and
Schedule Risk

The goal is to identify the probability
a given project or program cost will
be equal to or less than the targeted
cost and the schedule will be equal
to or less than the targeted schedule

More Robust

Because it is a more stringent
requirement, the JCL is almost always
higher than either the cost or
schedule confidence

Variety of Statistical Methods

Regression analysis is one tool of
many in data science

(=

Traditional Methods

Includes regression analysis,
clustering, dynamic programming,
and numerical optimization

|

|

T SAVINGS GOAL

ANCIAL

Many Newer Methods

Decision frees, Deep Learning, Text
Analytics, Reinforcement Learning

ot

Computationally Intense

Developments in machine learning
take advantage of greater

computing power @
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Motivation

COST AND SCHEDULE GROWTH

A LEGACY OF DISASTER

Software/ NASA/ Bridges/
Olympics IT Dams DoD Rail Tunnels Roads

Average Cost Growth 156% 43-56% 24-96% 52% 45% 34% 20%
Frequency of Occurrence 10/10 8/10 8/10 8/10 9/10 9/10 9/10
Frequency of Doubling lin2 1in 4 lin5 lin6 lin 12 lin 12 1 in 50
Average Schedule Delay 0% 63-84% 27-44% 27-52% 45% 23% 38%
Frequency of Schedule Delay  0/10 9/10 7/10 9/10 8/10 7/10 7/10

COMMON HIGH

Iv.\ul’r'iple Industries Experience Cost: 50% or More on Average

Significant Cost and Schedule (Mean)

Growth — Has Been a Problem
for a Long Time

FREQUENT

70-80% of Projects Experience
Cost and Schedule Growth

Source: Christian B. Smart, Solving for Project Risk Management, 2020

Schedule: 30% or More on
Average (Mean)

EXTREME (FOR COST)
Cost Growth in Excess of 100%
Is a Common Occurrence in
Most Projects (1 in 6)

C
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Track Record for Risk

compared to the actual outcome —

° like a darts player that turns away
n O yS I S from the board after throwing a dart

WORSE THAN RAN DOM WHAT LITTLE EXISTS IS NOT
GOOD
The limited data available is mainly
: for cost
Ratio of Actual Cost to Th .
. _ 0 e 90 percent confidence level
1 0% 0.6 that this level will be exceeded
2 19% 1.1
3 31% 1.0
4 329 11 However, for the 10 risk analyses in
i _H ] B the table, for only one was the
3 greater than 45% greater than 1.0 actual cost less than the 90 percent
6 52% 1.5 confidence level
7 84% 1.7
3 93% 16 EXTREMELY UNLIKELY
9 121% 20 While a small data set, the odds of
10 280% " A such an occurrence is extremely
- — -~ - "'" remote — 1 in 2.7 million
It's hard to improve if you don’t know You are more likely to be struck by
how well you have done in the past. lightning

Poll Question: How many people/organizations track cost estimates all the way through to execution?

¢ Source: Christian B. Smart, Solving for Project Risk Management, 2020 @
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Moftivation
Collecting and Dealing with Data

Data are the foundation for sound estimates
Bulk of time during analysis should be spent collecting, normalizing, and verifying data

ik D, &

1: NEED A LOT OF 2: CURSE OF 3: FEATURE
DATA DIMENSIONALITY EXTRACTION
Collect as much data as possible Amount of data needs grows Need to reduce the number of
exponentially in the number of variables considered
When limited data are available, variables
consider the use of Bayesian Can leverage unsupervised learning
methods to leverage all data Often have more columns techniques
available, including experience (variables) of data than rows (data
points)

/ C
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Benefifs
Joint Confidence Level Machine Learning

Influences Decision Making

JCL provides a holistic view of the project in
terms of possible outcomes given a program'’s
level of risk and uncertainty

Insighttful

Unsupervised learning can provide more
insight into your data, e.g., Clustering, K-
Nearest Neighbors

Predictive Accuracy

Techniques suited for categorical data,
such as regression trees; ensembles;

separates signal from noise; prevents
overfitting

Illuminates Correlation

Provides insight into correlation between
cost and schedule

Small Data Sets

Use imputation to fill in holes in data;
dimensionality reduction to deal with
problem of more variables than data
points; Bayesian methods to leverage
other data and experience

Creates Project Plans

By providing an understanding of the
relationship between cost and schedule,
JCL helps to create and mange credible
project plans

C
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Cost Risk Analysis

JCL Methods

100%
/ .
90%
Top-Down vs Bottom-Up Comparison

—  70%

% 60% /

A

2 50%

2 ao% - /

o "Integrated Cost
20% Master Estimate
D T [ 640 _ Schedule

;4‘ 500 $5,000 $5,500 $6,000 $6,500 $7,;)OO $7,:500 $3,l)00 $8,:500 $9‘l)00 $9,500 — 600
RY $M \\-560
_—— .
520 Program
Ares | Schedule Risk Analysis —"] 480 ";’ R|§k

oo L] S Register
90% —_—
ok o ] 400
6 —

g 0% / L— 360

$ 60% /

E 50% — T T T 1 t 320

2 o e 30 35 40 45 50 55 60 65 70 75 80 |

3 3% / Schedule (mos.) =
2% //./ -

10%
oy Integrated Risk
65 70 75 80 85 90 95
Duration (Months) Assessmeni
Top-Down Bottom-Up

Uses parametric models to estimate cost
and schedule uncertainty, then model the
JCL as ajoint probability distribution with
assigned correlation. The successful NASA
JCL was parametric; results can produce
similar results

Resource-loaded schedules are more time-
intensive. A risk management system with a
discrete and comprehensive risk list that
captures cost and schedule risks is
infegrated into resource loaded schedule.
(can be modeled in ACEIT software suite
using JACS and MS Project)

C
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JCL Methods, Cont.

Top-down vs Bottom-Up Comparison

Schedule

Ares | JCL Iso-Curves

m— Parametric 65th

Resource-Loaded 65th

m— Parametric 50th

Resource-Loaded 50th

>~

Cost

>

Accounting for Risk

Tends to underestimate risk, easy to
leave things out, plus it ignores
unknown-unknowns, which are largely
covered in the historical parametric
data

Similar Resulis

Results can produce similar results, as
with the example on the left for the
now-cancelled Ares | launch vehicle
project

Agencies Using JCL

NASA implements an agency JCL
policy; the successful NASA JCL was
parametric

C
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Schedule
and Cost

Data

Cost Estimating
Relationships (CERs)

and analogies
based on historical
cost data

JCL Process

CER Statistical
Estimating
Uncertainty

Cost Analysis

Technical Uncertainty

Risk

Schedule Estimating
Relationships (SERs)

based on historical
schedule data

Schedule

Analysis

Analysis

SER Statistical
Estimating
Uncertainty

© 0000 O

Top-Down Parameftric Method

Cost
Confidence

Combine .
CRA/SRA into Joint

joint probability Confidence
distribution

Schedule
Confidence
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Machine Learning Examples

Machine Learning techniques can be used to develop CERs and SERs to apply the top-down JCL parametric method

Initial Groupings

teration 5

Clustering

The practice of separating
objects into similar groups and
teases out relationships not
easily discovered at first
glance. Clustering begins with
the random selection of
cenfroids in the data then,
iterative calculations are
performed to optimize the
positions of the centroids.

16.1e+3
100.0%
Num_Promotions < 393-{no}—
10.3e+3
95.3%

Num_Promotions < 239

8161
90.5%

Num_Promotions < 41
15 8e+3
32 7%
East<1.86
12 4e+3 33 Qe+3 51 4e+3 133e+3
27 5% SZ‘V 47% 47%

Regression Trees

Can be used in preliminary
data exploration to
understand the most
significant variables within a
dataset. Since this method is
non-parametric, it does not
rely on data belonging to a
particular type of distribution.

BagEEEzEEYY

280
700,300,550,700,280

Imputation

A powerful method useful for
filling blanks when they are
missing in a dataset. An
analyst must understand the
data intimately to know if a
blank means that the factor is
not applicable for that data
point. Sometimes a blank
does not reflect a
nonresponse and should be
observed "asis.”

posn gz SEPTOAUCE Eoptey
new 1«3_8 U?) -n—-gi = L\Jiu base 3
se=CE@ Q. 2 @ Segypt =
i3 o2 onetworks aess
FEp®© give ch—l la era\soapp“
é ) = © 3 y (.> vinch
therefor COS Q_Cbae 9 £ .
8 CU ) ~ ©cD2
[:] = o0 0o 5
map £ One changbjgg >E§§
zggneuron O activig:”
E%% = neural E<
id 38 Crannr F— figur  lasticom

Natural Language Processing

Can be used to display the
most frequently used words
within the selected
documents/websites. If
interested in a specific topic,
NLP can search for words
related to this topic across
mediums. A word cloud can
be created which displays the
most frequently used words
within the select documents.

I .
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Develop Cost Estimating Relationships
CERs) using Optimization

Optimization is a core component of Machine Learning

What is Optimization?

Defined as a collection of mathematical
principles and methods used for solving
quantitative problems

Godal

To minimize or maximize some function
relative to some set, often representing a
range of choices available in a certain
situation. The function allows comparison
to determine the "best” solution

0 O

Almost all machine
learning algorithms
can be formulated
as an opfimization

problem

4 p
O

Basic Elements
Variables — free parameters the
algorithm can tune

Constraints — boundaries within which
the parameters must fall

Objective function — set of goals towards
which the algorithm drives the solution

Application

Can be used to minimize or maximize a
desired response related to endless
problems within the Government realm
or the private sector

C
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Opftimization Using Maximum Likelihood Estimation for Regression of

VLOOKUP  ~ X v S =LINEST(LN(C2:C20), LN(A2:B20), TRUE, TRUE)
A B C D E F G H | J K L

Ll Peak Staff ESLOC TotaIchrs Estimate %Error  LL SE

2

3 TRUE, TRUE)

4

5

6

7

8

9

10

1 INTERCEPT

12 X1

13 X2

14 THETA

15 N

16

17 NLL

18 R

19 SPE

20 BIAS

Software Program Example

MRLN METHOD STEPS:
1. Calculate the starting point results using array
LINEST function
2. Calculations
a) Calculate intercept
b) Calculate coefficients for independent
variables
c) Calculate starting point for THETA as the
Standard Error (SE) of the Y Estimate
d) Enter number of observations in dataset
3. Calculate the Estimate, % Error, Log Likelihood
(LL), and Standard Error (SE)
4. Calculate Negative Log Likelihood (NLL), R?, SPE,
and BIAS

&

Log Normal Error (MRLN)

Optimal

Solution

A B C D
1 EEEEE ESLOC Total Hours Estimate %FError  LL SE
2
3 WVALUEl | #VALUE!  #VALUE!
4 [ #vaue! "#vaLUE! "#vALUE!
5 [ svaLue! "svaLuE! “svaLuE!
6 [ svaLue "svaLuE! “svaLuE!
7 [ svatuel "svalue! "svaLuel
8
Solver Parameters X 5
10
o — . 1 INTERCE £ :‘WALUE! Optimized
) - 2 X R coefficient
To: (O Max @ Min (O value Of: 13 X2 #VALUE!
By Changing Variable Cells: & THETA HVALUE! VOlueS
;\;m:s?sft ‘ * [ N 0
16
Subject to the Constraints: 17 NLL T #VALUE!
add 18 R " snivo!
Change 19 SPE " 4VALUE!
: 20 BIAS " 4piv/ol
- EXCEL SOLVER STEPS:
[ Jiiaks Uneorirainad Variabies Now Nagaive ] Open Excel Solver under Data tab
e Gl o 2. Set objective to minimize the Negative Log
songmathod , Likelihood (NLL)
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear, Select the LP Simplex . .
engmsnfn;tunearsmverPrnb\ems, and select the Evolutionary engine for Solver prablems that are 3 Se-l- Chcnglng VG”Gble Ce“s -I-O INTERCEPT,
e independent variables, and THETA
- 4. Uncheck box for "Make Unconstrained Variables
Non-Negative"
MS E | 5. Solve. The values in Estimate, % Error, LL, and SE
Xce columns will automatically change if Solver can
SOLVER converge on a solution

CER Equation:
Total Hours = A(Peak Staff)°(ESLOC)¢

C
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The Trouble with Schedule Estimating Relationships (SERS)

SERs are generally more difficult to estimate using traditional parametric methods

1
2
3
4

17

Regression Typically Works
Well with Cost

Wider spread in data points (cost
and drivers) lends itself to
meaningful frendlines

Regression Often Does Not

Cost, $ Millions
g § 8 8

g

Work Well with Schedule

100
Schedule does not vary as much in °e

terms of magnitude as cost — makes
regressions less significant

Machine Learning to the

Rescuel

Alternative techniques such as
regression trees are ideal when
there is a significant amount of
categorical data

Regression Trees Can Work

Better for Schedule

For software data use case,
parametric schedule had no
significant correlation with typical
drivers; but with regression tree,
Pearson’s RZ was 50%

Notional Cost vs. Weight Trend

200 400 600
Weight, Lbs.

SPLITTING

Notional Schedule Duration vs. Weight Trend

0
o

~
o

R*=0.2247

~
=}
[ ]
[ ]

Development Schedule, Months
@ a
S &
. ..

w
o

v
=]
o

100 200 300 400 500 600 700 800 900 1000
Weight, Lbs.

800 1000

BRANCH/SUB-TREE

DECISION
NODE

ROOT NODE

TERMINAL
NODE

DECISION

NODE

4 )

DECISION A

NODE

TERMINAL B TERMINAL c
NODE NODE )

NOTE: A IS PARENTOFBOF C

TERMINAL LEUNES  The data points at the terminal node
NODE NODE . .
are averaged to provide an estimate

of the variables of interest based on
the closest data points

C
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Schedule Estimating Relationship (SER) Regression Tree

Software Program Example

Duration
100%

| |
B
Duration Duration
70% K10)74
| |

Op Env = Air Vehicle,

‘ Surface Vehicle, etc. —‘ ‘ Peak Staff >= # \

Duration Duration Duration Duration
60% 10)/A 20% 10%

18 :
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CER and SER Estimating Uncertainty

Generate Cost and Schedule S-Curves by assigning uncertainty to the regression equations

Cost o™,
Estin{te‘ )
L ~
.

& Historical data point
— Cost estimating relationship

------ Standard percent error bounds

| Cost Driver (Weight)
Input
variable

Parametric Uncertainty

Parametric CER/SER uncertainty represents
uncertainty about the estimate’s residual &,
(e.g.. Y = aXbg). The further the input
variable is from the center of mass data
used to derive the CER/SER, the greater the
uncertainty of the CER/SER

20

Cost

1000 4

$800 4

$800 |

5400 -

$200 -+

SEE =53.6

SEE =445

5 10 15 i) 25 30
Payload Weight (lbs)

CER/SER Uncertainty

The Standard Error of the Estimate (SEE)
converts to a prediction interval to
account for the distance of the estimate
from the center of the CER/SER dataset.
Uncertainty will increase (standard
deviation gets larger) as the point estimate
moves towards the data boundaries.

Regression Equation

Regardless of the parametric
method used, even if the
independent variables are known
precisely, the regression equation
will return a result that is not certain

Error Term

The error of the regression equation
scales with the CER/SER result,
making multiplicative error terms
the preferred approach for
modeling CER/SER uncertainty

Risk Parameters

The prediction interval or standard
error provided by the regression
analysis can be used to determine
the CER/SER uncertainty bounds

C
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Combining CER
Input and Estimating Uncertainty

Calculate uncertainty using propagation of errors

Combined CER and CER Input Uncertainty

CER
Result | ‘ CER Upper Bound ‘ ¢
For Input Max
'« . ° Y=ax’e‘
@
Combined
e-~Niy,o’
’ CER Uncertainty il
' and a and P are parameters
| CER Input Uncertainty ' | g
L ] : '
[ Al |
[ S |
< ” L T |
.././ “ ) J |
! p— “ | | ' |
’ CER Lower Bound ‘ - ko )
For InputMin b ! <
" ~ Min ' Max
/ : : 'Al :
l‘ Meon
Data ‘
CostDriver | oot Eqtimate CER Input (mode)
21

2
3
A

Input Uncertainty
Assume triangular distribution on input

variables and run low (L), most likely (ML),
and high (H) values through CER to obtain L,a B j

L+ML+H

x 3

L2+ ML?+H?2—-L+«ML—L+xH—MLxH

ML, H estimates. Calculate mean and 18
standard deviation of triangular distribution. A
Estimating Uncertainty il

Treated as the standard deviation of a

lognormal distribution. Determine the mean

and standard deviation in log space.

Convert mean and standard deviation to A

unit space.

Assumptions

Assume input and estimating uncertainty

are independent; residuals are
multiplicative

Propagation of Errors
Combine CER input (X) and estimating

uncertainty by multiplying the means and

standard deviations.

pX=Y)=p p,

(Y)  o(X*Y)=a,7 0% 0.7 7T 0 A 7

C
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Regression Tree Uncertainty

Calculate total uncertainty using simulation

Simulation output fits a Gaussian/normal distribution
based on sample mean and standard deviation of the

simulation results

0.015
|

Density

[
.~
|
o )

1 1 1T T T 1
0 20 40 60 80 120

0.000
|

Data

2
3
4

Input Uncertainty

Assume triangular distributions on SER inputs

Estimating Uncertainty

Regression free residuals fit a
Gaussian/normal distribution, determined
mean and variance

Assumptions

Assume input and estimating uncertainty
are independent; errors are additive

Simulation

Conducted 1,000 frial simulation; on each
draw:

1. Simulate the inputs, run the SER
2. Simulate a residual
3. Add the results of 1. and 2.

C
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Top-Down Parametric

After CER/SER is developed, conduct cost and schedule risk analyses

2.0

0.9} b =0,02=0.2

p=0, o=025 | l‘l = n'u2= 1.n
u-a p = D'GZ= 5-'3

~ p - ral= u-5

1

xov 21

fx(x; p, 0)

°8)

Lognormal Distribution Normal Distribution

Unbounded in either direction with an
equal probability of the low/high.

Lower bound never less than zero and an
upper bound of infinity. Probability is
skewed right providing at least some Probability is not skewed where cost and

probability of a large cost or schedule schedule will more likely fall within the
overrun. mean and extreme low and high values
are less likely.

23

Point Estimate

Determine the point estimate values for
the project cost and project schedule

Probability Distributions

To calculate a joint confidence, assume
lognormal or normal risk distributions on
cost and schedule using the mean and
standard deviation as the parameters
derived from the cost and schedule
analyses

Correlation

Assume linear correlation between cost
and schedule based on historical data
(e.g., Correlation value of 0.6 or 0.7)

C
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MS Excel Joint Confidence Level (JCL) Calculator

Input mean values
from cost and
schedule risk

analyses

@ SECURITY WARNING Macros have been disabled.

Select probability

Top-Down Parametric Method

distribution for cost
and schedule

Enable Content

Select Enable Macros

G22 v Jr
A , ¢ | D | E | F G H I J | K L | M | N | 0O | P

1] Mean  Sigma  Distribution p q 1st 9%th
2 |Cost 530 189 Lognormal 6.2 0.3 2564 7395197
3 |Sched 45 6.75 Normal 3.8 0.1492 29.3 60.7
4
9_|Correlation , 0.6 Cale. Joint Conf <-—linear correlation between cost/schedule: adjust this value to attain rho correlation value you want for cost/schedule
6 rho(1,2)  0.608411 alc. Joint L.on. <---rho Is calculated value used for bivariate lognormal, and is the correlation value used in calculations

Input a correlation

value between e
SHREL R EEERS (Project Budget: $600 < SRR
Project Schedule: 40 schedule values

12 Your cost confidence is: 71.5%| <—independent, not taking schedule info account
13 Your schedule confidence is: 22.9%| <—independent, not taking cost into account
14 Your project has joint cost and schedule confidence equal to:  21.7%|<-—-probability of achieving both project budget and project schedule

24

Note: Top-Down JCL Iso-Curve Calculator developed by Dr. Christian Smart

C
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Top-Down JCL Result

JCL is calculated parametrically by combining the CRA and SRA into a joint probability distribution

Project Plan JCL
Cost-Schedule Iso-Joint Confidence ) . .
Determine the JCL based on the current project plan
70 — to include the budget amount and schedule (months)
+ ercentle
= 20th Percentile
65 30th Percentile
I . 40th Percentile
— 80 § *50th Percentile
b2 l % » 60th Percentile
= :
= h +65th Percentie
§ 25 § Ei % :E: - 70th Percentie AgenCy JCL GOO'S
S— $ e
1 + T. . . y . .
S 50 Y e _ ) Determine the agency’s JCL requirement to establish
b I o a program budget to achieve the lifecycle cost and
= 6 Mos PR K ok RO
a 45 1 % Ii:_ »¢ Project Plan Cost schedule
o i =4, and Schedule
=) O L T
o 40 33::’ llllllllllllllllllllllllllllllllllllll
@ Feraag 1L,
= Bessvsnss o annselecsartsnstcsstssntssansncssnsssnnssanssantse
? 35
soom Reserves
30 T T T T . . .
300 400 500 600 700 800 ) Depending on The relative importance of schedule
vs. cost, determine the amount of cost reserves and
Cost ($M) additional schedule duration needed to achieve the

. agency's JCL goal
Interpretation of JCL Result:

Current project planis at 24% JCL ($435M budgeted with a
schedule of 43 months). To achieve a 50% JCL, an additional $90M
in funding and 6 months of additional schedule is needed. @
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Example Top-Down JCL Result

The JCL helps inform management of the likelihood of a project’s programmatic success

Software Program Example

Software Program Example

Cost-Schedule Iso-Joint Confidence

—— 10th Percentile

—=a— 20th Percentile
30th Percentile

P
s

40th Percentile
—x— 50th Percentile
—e— 60th Percentile

| )

——70th Percentile

|
- .,

‘“\H\\A\

Schedule Duration (Months)

Cost (Hours)

27

Benefits of JCL to Management

Integrated Picture

) JCL incorporates schedule, resources,
and risk. Forces an integrated picture at
the beginning and throughout the
lifecycle

Forcing Function

) NASA's JCL policy shows evidence that
it has been an effective enforcer for
better project management and
executive decision making

Project Goals

) JCL will help determine if results match
project cost and schedule expectations.
The agency’s JCL objective will provide
how much additional funding and
schedule is needed to achieve the
desired JCL

C

G AL ORATH



Case Study: NASA MAVEN Spacecraft Program
Success Story

Joint Confidence Iso-Curves
100

95

90

4 \With 1-yea nded Phase A 10%
70% JCL: + $14 °

85 0% JCL +$23M —20%
—30%

80 i~ —40%
——50%

Schedule (Months)

% JCLF$77-3195M/+11-2T"m

75 AV
% JCL: +$50M/+8 mos

—70%

#—ProjectPlan Cost and Schedule
70

65
$400 $500 $600 $700 $800 $900 $1,000

Cost (RYSM)

JCL Estimate

In 2009, the MAVEN spacecraft program
used the top-down parametric method to
estimate the JCL. With the project plan
cost and schedule, the JCL was estimated
at 23% and if a year was added to the
development schedule, the JCL was
estimated at 44%.

28

Program Actuals

In 2013, the actuals for cost and
schedule for the MAVEN program came
in at the 50% JCL estimated in 2009

C
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Solving for Project Risk Management:

Understanding the Critical Role of Uncertainty in the Army, Navy, Veterans Affairs, and OUSD
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several Department of Defense hardware and
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PhD in Applied Mathematics.
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THE FUTURE. DELIVERED.

Galorath provides solutions that help organizational leaders make complex business decisions
with confidence. Our predictive analytics products and services give complete insight info the

implications of significant technical or financial decisions, allowing organizations 1o execute a
plan with assurance and reach their goals with absolute certainty.

Sara Jardine

Learn more or schedule a demo @ sjardine@galorath.com
(310) 206-6320 » sales@galorath.com G AL ORATH

Christian Smart, PhD, CCEA
csmart@galorath.com

Kimberly Roye
I<r eolrc:’rh.com
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